Investigating Vix Levels And Returns¶
Python Imports¶
In [1]:
# Standard Library
import os
import sys
import datetime
import random
import warnings
# Data Handling
import pandas as pd
import numpy as np
# Data Visualization
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import seaborn as sns
import dataframe_image as dfi
from matplotlib.ticker import FuncFormatter, FormatStrFormatter, MultipleLocator
# Data Sources
import yfinance as yf
# Statistical Analysis
import statsmodels.api as sm
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
# Suppress warnings if needed
# warnings.filterwarnings("ignore")
Set Base Directory¶
In [2]:
# Add the base directory to the system path
base_directory = "/home/jared/Cloud_Storage/Dropbox/Quant_Finance_Research"
sys.path.append(base_directory)
Import Functions¶
In [3]:
# TBD
Python Functions¶
In [4]:
# This function pulls data from Yahoo finance
def yf_data_updater(fund):
# Download data from YF
df_comp = yf.download(fund)
# Drop the column level with the ticker symbol
df_comp.columns = df_comp.columns.droplevel(1)
# Reset index
df_comp = df_comp.reset_index()
# Remove the "Price" header from the index
df_comp.columns.name = None
# Reset date column
df_comp['Date'] = df_comp['Date'].dt.tz_localize(None)
# Set 'Date' column as index
df_comp = df_comp.set_index('Date', drop=True)
# Drop data from last day because it's not accrate until end of day
df_comp = df_comp.drop(df_comp.index[-1])
# Export data to excel
file = fund + ".xlsx"
df_comp.to_excel(file, sheet_name='data')
print(f"The first and last date of data for {fund} is: ")
print(df_comp[:1])
print(df_comp[-1:])
print(f"Data updater complete for {fund} data")
return print(f"--------------------")
In [5]:
# Set number of decimal places in pandas
def dp(decimal_places):
pd.set_option('display.float_format', lambda x: f'%.{decimal_places}f' % x)
In [6]:
def load_data(file):
# Import CSV
try:
df = pd.read_csv(file)
except:
pass
# Import excel
try:
df = pd.read_excel(file, sheet_name='data', engine='openpyxl')
except:
pass
return df
In [7]:
# The `df_info` function returns some useful information about
# a dataframe, such as the columns, data types, and size.
def df_info(df):
print('The columns, shape, and data types are:')
print(df.info())
print('The first 5 rows are:')
display(df.head())
print('The last 5 rows are:')
display(df.tail())
Import Data¶
CBOE Volatility Index (VIX)¶
In [8]:
yf_data_updater('^VIX')
YF.download() has changed argument auto_adjust default to True
[*********************100%***********************] 1 of 1 completed
The first and last date of data for ^VIX is: Close High Low Open Volume Date 1990-01-02 17.24 17.24 17.24 17.24 0 Close High Low Open Volume Date 2025-03-20 19.799999 21.17 19.299999 19.52 0 Data updater complete for ^VIX data --------------------
In [9]:
dp(2)
In [10]:
# VIX
vix = load_data('^VIX.xlsx')
# Set 'Date' column as datetime
vix['Date'] = pd.to_datetime(vix['Date'])
# Drop 'Volume'
vix.drop(columns = {'Volume'}, inplace = True)
# Set Date as index
vix.set_index('Date', inplace = True)
In [11]:
# Check to see if there are any NaN values
vix[vix['High'].isna()]
Out[11]:
Close | High | Low | Open | |
---|---|---|---|---|
Date |
In [12]:
# Forward fill to clean up missing data
vix['High'] = vix['High'].ffill()
In [13]:
df_info(vix)
The columns, shape, and data types are: <class 'pandas.core.frame.DataFrame'> DatetimeIndex: 8870 entries, 1990-01-02 to 2025-03-20 Data columns (total 4 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Close 8870 non-null float64 1 High 8870 non-null float64 2 Low 8870 non-null float64 3 Open 8870 non-null float64 dtypes: float64(4) memory usage: 346.5 KB None The first 5 rows are:
Close | High | Low | Open | |
---|---|---|---|---|
Date | ||||
1990-01-02 | 17.24 | 17.24 | 17.24 | 17.24 |
1990-01-03 | 18.19 | 18.19 | 18.19 | 18.19 |
1990-01-04 | 19.22 | 19.22 | 19.22 | 19.22 |
1990-01-05 | 20.11 | 20.11 | 20.11 | 20.11 |
1990-01-08 | 20.26 | 20.26 | 20.26 | 20.26 |
The last 5 rows are:
Close | High | Low | Open | |
---|---|---|---|---|
Date | ||||
2025-03-14 | 21.77 | 24.36 | 21.48 | 24.35 |
2025-03-17 | 20.51 | 22.95 | 20.32 | 22.89 |
2025-03-18 | 21.70 | 22.57 | 20.41 | 20.83 |
2025-03-19 | 19.90 | 22.10 | 19.42 | 21.84 |
2025-03-20 | 19.80 | 21.17 | 19.30 | 19.52 |
In [14]:
vix_stats = vix.describe()
vix_stats
Out[14]:
Close | High | Low | Open | |
---|---|---|---|---|
count | 8870.00 | 8870.00 | 8870.00 | 8870.00 |
mean | 19.46 | 20.37 | 18.80 | 19.56 |
std | 7.82 | 8.36 | 7.39 | 7.90 |
min | 9.14 | 9.31 | 8.56 | 9.01 |
25% | 13.84 | 14.50 | 13.39 | 13.92 |
50% | 17.62 | 18.32 | 17.03 | 17.66 |
75% | 22.81 | 23.80 | 22.13 | 22.96 |
max | 82.69 | 89.53 | 72.76 | 82.69 |
In [15]:
vix_stats.loc['mean + 1 std'] = {'Open': vix_stats.loc['mean']['Open'] + vix_stats.loc['std']['Open'],
'High': vix_stats.loc['mean']['High'] + vix_stats.loc['std']['High'],
'Low': vix_stats.loc['mean']['Low'] + vix_stats.loc['std']['Low'],
'Close': vix_stats.loc['mean']['Close'] + vix_stats.loc['std']['Close']}
vix_stats.loc['mean + 2 std'] = {'Open': vix_stats.loc['mean']['Open'] + 2 * vix_stats.loc['std']['Open'],
'High': vix_stats.loc['mean']['High'] + 2 * vix_stats.loc['std']['High'],
'Low': vix_stats.loc['mean']['Low'] + 2 * vix_stats.loc['std']['Low'],
'Close': vix_stats.loc['mean']['Close'] + 2 * vix_stats.loc['std']['Close']}
vix_stats.loc['mean - 1 std'] = {'Open': vix_stats.loc['mean']['Open'] - vix_stats.loc['std']['Open'],
'High': vix_stats.loc['mean']['High'] - vix_stats.loc['std']['High'],
'Low': vix_stats.loc['mean']['Low'] - vix_stats.loc['std']['Low'],
'Close': vix_stats.loc['mean']['Close'] - vix_stats.loc['std']['Close']}
In [16]:
vix_stats
Out[16]:
Close | High | Low | Open | |
---|---|---|---|---|
count | 8870.00 | 8870.00 | 8870.00 | 8870.00 |
mean | 19.46 | 20.37 | 18.80 | 19.56 |
std | 7.82 | 8.36 | 7.39 | 7.90 |
min | 9.14 | 9.31 | 8.56 | 9.01 |
25% | 13.84 | 14.50 | 13.39 | 13.92 |
50% | 17.62 | 18.32 | 17.03 | 17.66 |
75% | 22.81 | 23.80 | 22.13 | 22.96 |
max | 82.69 | 89.53 | 72.76 | 82.69 |
mean + 1 std | 27.29 | 28.73 | 26.19 | 27.45 |
mean + 2 std | 35.11 | 37.09 | 33.58 | 35.35 |
mean - 1 std | 11.64 | 12.00 | 11.40 | 11.66 |
In [17]:
deciles = vix.quantile(np.arange(0, 1.1, 0.1))
display(deciles)
Close | High | Low | Open | |
---|---|---|---|---|
0.00 | 9.14 | 9.31 | 8.56 | 9.01 |
0.10 | 12.11 | 12.62 | 11.72 | 12.13 |
0.20 | 13.24 | 13.86 | 12.84 | 13.29 |
0.30 | 14.57 | 15.27 | 14.06 | 14.64 |
0.40 | 16.07 | 16.74 | 15.53 | 16.11 |
0.50 | 17.62 | 18.32 | 17.03 | 17.66 |
0.60 | 19.53 | 20.36 | 18.98 | 19.65 |
0.70 | 21.59 | 22.60 | 20.96 | 21.74 |
0.80 | 24.28 | 25.29 | 23.45 | 24.37 |
0.90 | 28.67 | 29.95 | 27.74 | 28.82 |
1.00 | 82.69 | 89.53 | 72.76 | 82.69 |
In [18]:
# Plotting
plt.figure(figsize=(12, 6), facecolor="#F5F5F5")
# Histogram
plt.hist([vix['High']], label=['High'], bins=200, edgecolor='black', color='steelblue')
# Set X axis
x_tick_spacing = 5 # Specify the interval for y-axis ticks
plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.xlabel("VIX", fontsize=10)
plt.xticks(rotation=0, fontsize=8)
# Set Y axis
y_tick_spacing = 25 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.ylabel("# Of Datapoints", fontsize=10)
plt.yticks(fontsize=8)
# Set title, layout, grid, and legend
plt.title("CBOE Volatility Index (VIX) Histogram (200 Bins)", fontsize=12)
plt.tight_layout()
plt.grid(True, linestyle='--', alpha=0.7)
plt.legend(fontsize=9)
# Save figure and display plot
plt.savefig("04_Histogram.png", dpi=300, bbox_inches="tight")
plt.show()
In [19]:
# Plotting
plt.figure(figsize=(12, 6), facecolor="#F5F5F5")
# Histogram
plt.hist([vix['High']], label=['High'], bins=200, edgecolor='black', color='steelblue')
# Plot a vertical line at the mean, mean + 1 std, and mean + 2 std
plt.axvline(vix_stats.loc['mean']['High'], color='red', linestyle='dashed', linewidth=1, label=f'Mean: {vix_stats.loc['mean']['High']:.2f}')
plt.axvline(vix_stats.loc['mean + 1 std']['High'], color='green', linestyle='dashed', linewidth=1, label=f'Mean + 1 std: {vix_stats.loc['mean + 1 std']['High']:.2f}')
plt.axvline(vix_stats.loc['mean + 2 std']['High'], color='orange', linestyle='dashed', linewidth=1, label=f'Mean + 2 std: {vix_stats.loc['mean + 2 std']['High']:.2f}')
plt.axvline(vix_stats.loc['mean - 1 std']['High'], color='brown', linestyle='dashed', linewidth=1, label=f'Mean - 1 std: {vix_stats.loc['mean - 1 std']['High']:.2f}')
# Set X axis
x_tick_spacing = 5 # Specify the interval for y-axis ticks
plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.xlabel("VIX", fontsize=10)
plt.xticks(rotation=0, fontsize=8)
# Set Y axis
y_tick_spacing = 25 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.ylabel("# Of Datapoints", fontsize=10)
plt.yticks(fontsize=8)
# Set title, layout, grid, and legend
plt.title("CBOE Volatility Index (VIX) Histogram (200 Bins)", fontsize=12)
plt.tight_layout()
plt.grid(True, linestyle='--', alpha=0.7)
plt.legend(fontsize=9)
# Save figure and display plot
plt.savefig("05_Histogram+Mean.png", dpi=300, bbox_inches="tight")
plt.show()
Plots¶
CBOE Volatility Index (VIX)¶
1990 - 2009¶
In [20]:
# Plotting
plt.figure(figsize=(12, 6), facecolor="#F5F5F5")
# Plot data
plt.plot(vix[vix.index <= '2009-12-31'].index, vix[vix.index <= '2009-12-31']['High'], label='High', linestyle='-', color='steelblue', linewidth=1.5)
# plt.plot(vix.index, vix['SMA_10'], label='10 Day SMA', linestyle='-', color='r', linewidth=1)
# plt.plot(vix.index, vix['SMA_20'], label='20 Day SMA', linestyle='-', color='orange', linewidth=1)
# plt.plot(vix.index, vix['SMA_50'], label='50 Day SMA', linestyle='-', color='g', linewidth=1)
# Set X axis
plt.gca().xaxis.set_major_locator(mdates.YearLocator())
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
plt.xlabel("Date", fontsize=10)
plt.xticks(rotation=45, fontsize=8)
# Set Y axis
y_tick_spacing = 5 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.ylabel("VIX", fontsize=10)
plt.yticks(fontsize=8)
# Set title, layout, grid, and legend
plt.title("CBOE Volatility Index (VIX), 1990 - 2009", fontsize=12)
plt.tight_layout()
plt.grid(True, linestyle='--', alpha=0.7)
plt.legend(fontsize=9)
# Save figure and display plot
plt.savefig("06_Plot_1990-2009.png", dpi=300, bbox_inches="tight")
plt.show()
In [21]:
# Plotting
plt.figure(figsize=(12, 6), facecolor="#F5F5F5")
# Plot data
plt.plot(vix[vix.index > '2009-12-31'].index, vix[vix.index > '2009-12-31']['High'], label='High', linestyle='-', color='steelblue', linewidth=1.5)
# plt.plot(vix.index, vix['SMA_10'], label='10 Day SMA', linestyle='-', color='r', linewidth=1)
# plt.plot(vix.index, vix['SMA_20'], label='20 Day SMA', linestyle='-', color='orange', linewidth=1)
# plt.plot(vix.index, vix['SMA_50'], label='50 Day SMA', linestyle='-', color='g', linewidth=1)
# Set X axis
plt.gca().xaxis.set_major_locator(mdates.YearLocator())
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
plt.xlabel("Date", fontsize=10)
plt.xticks(rotation=45, fontsize=8)
# Set Y axis
y_tick_spacing = 5 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.ylabel("VIX", fontsize=10)
plt.yticks(fontsize=8)
# Set title, layout, grid, and legend
plt.title("CBOE Volatility Index (VIX), 2010 - 2024", fontsize=12)
plt.tight_layout()
plt.grid(True, linestyle='--', alpha=0.7)
plt.legend(fontsize=9)
# Save figure and display plot
plt.savefig("07_Plot_2010-2024.png", dpi=300, bbox_inches="tight")
plt.show()
Determining A Spike Level¶
In [22]:
# Define the spike multiplier for detecting significant spikes
spike_level = 1.25
# =========================
# Simple Moving Averages (SMA)
# =========================
# Calculate 10-period SMA of 'High'
vix['High_SMA_10'] = vix['High'].rolling(window=10).mean()
# Shift the 10-period SMA by 1 to compare with current 'High'
vix['High_SMA_10_Shift'] = vix['High_SMA_10'].shift(1)
# Calculate the spike level based on shifted SMA and spike multiplier
vix['Spike_Level_SMA'] = vix['High_SMA_10_Shift'] * spike_level
# Calculate 20-period SMA of 'High'
vix['High_SMA_20'] = vix['High'].rolling(window=20).mean()
# Determine if 'High' exceeds the spike level (indicates a spike)
vix['Spike_SMA'] = vix['High'] >= vix['Spike_Level_SMA']
# Calculate 50-period SMA of 'High' for trend analysis
vix['High_SMA_50'] = vix['High'].rolling(window=50).mean()
# =========================
# Exponential Moving Averages (EMA)
# =========================
# Calculate 10-period EMA of 'High'
vix['High_EMA_10'] = vix['High'].ewm(span=10, adjust=False).mean()
# Shift the 10-period EMA by 1 to compare with current 'High'
vix['High_EMA_10_Shift'] = vix['High_EMA_10'].shift(1)
# Calculate the spike level based on shifted EMA and spike multiplier
vix['Spike_Level_EMA'] = vix['High_EMA_10_Shift'] * spike_level
# Calculate 20-period EMA of 'High'
vix['High_EMA_20'] = vix['High'].ewm(span=20, adjust=False).mean()
# Determine if 'High' exceeds the spike level (indicates a spike)
vix['Spike_EMA'] = vix['High'] >= vix['Spike_Level_EMA']
# Calculate 50-period EMA of 'High' for trend analysis
vix['High_EMA_50'] = vix['High'].ewm(span=50, adjust=False).mean()
In [23]:
vix.head()
Out[23]:
Close | High | Low | Open | High_SMA_10 | High_SMA_10_Shift | Spike_Level_SMA | High_SMA_20 | Spike_SMA | High_SMA_50 | High_EMA_10 | High_EMA_10_Shift | Spike_Level_EMA | High_EMA_20 | Spike_EMA | High_EMA_50 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | ||||||||||||||||
1990-01-02 | 17.24 | 17.24 | 17.24 | 17.24 | NaN | NaN | NaN | NaN | False | NaN | 17.24 | NaN | NaN | 17.24 | False | 17.24 |
1990-01-03 | 18.19 | 18.19 | 18.19 | 18.19 | NaN | NaN | NaN | NaN | False | NaN | 17.41 | 17.24 | 21.55 | 17.33 | False | 17.28 |
1990-01-04 | 19.22 | 19.22 | 19.22 | 19.22 | NaN | NaN | NaN | NaN | False | NaN | 17.74 | 17.41 | 21.77 | 17.51 | False | 17.35 |
1990-01-05 | 20.11 | 20.11 | 20.11 | 20.11 | NaN | NaN | NaN | NaN | False | NaN | 18.17 | 17.74 | 22.18 | 17.76 | False | 17.46 |
1990-01-08 | 20.26 | 20.26 | 20.26 | 20.26 | NaN | NaN | NaN | NaN | False | NaN | 18.55 | 18.17 | 22.71 | 18.00 | False | 17.57 |
In [24]:
vix.tail()
Out[24]:
Close | High | Low | Open | High_SMA_10 | High_SMA_10_Shift | Spike_Level_SMA | High_SMA_20 | Spike_SMA | High_SMA_50 | High_EMA_10 | High_EMA_10_Shift | Spike_Level_EMA | High_EMA_20 | Spike_EMA | High_EMA_50 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | ||||||||||||||||
2025-03-14 | 21.77 | 24.36 | 21.48 | 24.35 | 26.45 | 26.25 | 32.82 | 22.66 | False | 19.78 | 25.58 | 25.85 | 32.31 | 23.67 | False | 20.92 |
2025-03-17 | 20.51 | 22.95 | 20.32 | 22.89 | 26.31 | 26.45 | 33.06 | 23.04 | False | 19.88 | 25.10 | 25.58 | 31.97 | 23.60 | False | 21.00 |
2025-03-18 | 21.70 | 22.57 | 20.41 | 20.83 | 25.94 | 26.31 | 32.89 | 23.36 | False | 19.94 | 24.64 | 25.10 | 31.37 | 23.50 | False | 21.06 |
2025-03-19 | 19.90 | 22.10 | 19.42 | 21.84 | 25.66 | 25.94 | 32.42 | 23.67 | False | 20.03 | 24.18 | 24.64 | 30.80 | 23.37 | False | 21.11 |
2025-03-20 | 19.80 | 21.17 | 19.30 | 19.52 | 25.19 | 25.66 | 32.08 | 23.90 | False | 20.11 | 23.63 | 24.18 | 30.22 | 23.16 | False | 21.11 |
In [25]:
vix[vix['High'] >= 50]
Out[25]:
Close | High | Low | Open | High_SMA_10 | High_SMA_10_Shift | Spike_Level_SMA | High_SMA_20 | Spike_SMA | High_SMA_50 | High_EMA_10 | High_EMA_10_Shift | Spike_Level_EMA | High_EMA_20 | Spike_EMA | High_EMA_50 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | ||||||||||||||||
2008-10-06 | 52.05 | 58.24 | 45.12 | 45.12 | 42.92 | 40.52 | 50.65 | 37.24 | True | 28.17 | 44.33 | 41.24 | 51.55 | 38.82 | True | 31.65 |
2008-10-07 | 53.68 | 54.19 | 47.03 | 52.05 | 44.73 | 42.92 | 53.65 | 38.66 | True | 28.76 | 46.12 | 44.33 | 55.41 | 40.29 | False | 32.53 |
2008-10-08 | 57.53 | 59.06 | 51.90 | 53.68 | 46.97 | 44.73 | 55.91 | 40.34 | True | 29.46 | 48.47 | 46.12 | 57.65 | 42.07 | True | 33.57 |
2008-10-09 | 63.92 | 64.92 | 52.54 | 57.57 | 49.94 | 46.97 | 58.71 | 42.27 | True | 30.31 | 51.46 | 48.47 | 60.59 | 44.25 | True | 34.80 |
2008-10-10 | 69.95 | 76.94 | 65.63 | 65.85 | 53.99 | 49.94 | 62.42 | 44.79 | True | 31.39 | 56.10 | 51.46 | 64.33 | 47.36 | True | 36.46 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2020-03-31 | 53.54 | 58.75 | 50.88 | 56.69 | 70.93 | 73.54 | 91.93 | 66.93 | False | 39.38 | 67.38 | 69.30 | 86.62 | 63.00 | False | 46.75 |
2020-04-01 | 57.06 | 60.59 | 52.76 | 57.38 | 68.44 | 70.93 | 88.67 | 68.18 | False | 40.33 | 66.15 | 67.38 | 84.23 | 62.77 | False | 47.29 |
2020-04-02 | 50.91 | 57.24 | 50.45 | 54.46 | 65.74 | 68.44 | 85.56 | 68.90 | False | 41.21 | 64.53 | 66.15 | 82.68 | 62.24 | False | 47.68 |
2020-04-03 | 46.80 | 52.29 | 46.74 | 51.11 | 64.02 | 65.74 | 82.18 | 68.79 | False | 41.98 | 62.30 | 64.53 | 80.66 | 61.30 | False | 47.86 |
2024-08-05 | 38.57 | 65.73 | 23.39 | 23.39 | 23.84 | 18.95 | 23.69 | 19.11 | True | 15.66 | 28.04 | 19.66 | 24.58 | 22.15 | True | 17.62 |
93 rows × 16 columns
Spike Totals By Year¶
In [26]:
# Ensure the index is a DatetimeIndex
vix.index = pd.to_datetime(vix.index)
# Create a new column for the year extracted from the date index
vix['Year'] = vix.index.year
# Group by year and the "Spike_SMA" and "Spike_EMA" columns, then count occurrences
spike_count_SMA = vix.groupby(['Year', 'Spike_SMA']).size().unstack(fill_value=0)
spike_count_SMA
Out[26]:
Spike_SMA | False | True |
---|---|---|
Year | ||
1990 | 248 | 5 |
1991 | 249 | 4 |
1992 | 250 | 4 |
1993 | 251 | 2 |
1994 | 243 | 9 |
1995 | 252 | 0 |
1996 | 248 | 6 |
1997 | 247 | 6 |
1998 | 243 | 9 |
1999 | 250 | 2 |
2000 | 248 | 4 |
2001 | 240 | 8 |
2002 | 248 | 4 |
2003 | 251 | 1 |
2004 | 250 | 2 |
2005 | 250 | 2 |
2006 | 242 | 9 |
2007 | 239 | 12 |
2008 | 238 | 15 |
2009 | 249 | 3 |
2010 | 239 | 13 |
2011 | 240 | 12 |
2012 | 248 | 2 |
2013 | 249 | 3 |
2014 | 235 | 17 |
2015 | 240 | 12 |
2016 | 234 | 18 |
2017 | 244 | 7 |
2018 | 228 | 23 |
2019 | 241 | 11 |
2020 | 224 | 29 |
2021 | 235 | 17 |
2022 | 239 | 12 |
2023 | 246 | 4 |
2024 | 237 | 15 |
2025 | 48 | 5 |
In [27]:
# Ensure the index is a DatetimeIndex
vix.index = pd.to_datetime(vix.index)
# Create a new column for the year extracted from the date index
vix['Year'] = vix.index.year
# Group by year and the "Spike_SMA" and "Spike_EMA" columns, then count occurrences
spike_count_EMA = vix.groupby(['Year', 'Spike_EMA']).size().unstack(fill_value=0)
spike_count_EMA
Out[27]:
Spike_EMA | False | True |
---|---|---|
Year | ||
1990 | 247 | 6 |
1991 | 251 | 2 |
1992 | 253 | 1 |
1993 | 251 | 2 |
1994 | 247 | 5 |
1995 | 252 | 0 |
1996 | 252 | 2 |
1997 | 250 | 3 |
1998 | 246 | 6 |
1999 | 250 | 2 |
2000 | 250 | 2 |
2001 | 241 | 7 |
2002 | 250 | 2 |
2003 | 251 | 1 |
2004 | 251 | 1 |
2005 | 250 | 2 |
2006 | 248 | 3 |
2007 | 242 | 9 |
2008 | 240 | 13 |
2009 | 251 | 1 |
2010 | 243 | 9 |
2011 | 242 | 10 |
2012 | 250 | 0 |
2013 | 250 | 2 |
2014 | 236 | 16 |
2015 | 243 | 9 |
2016 | 238 | 14 |
2017 | 244 | 7 |
2018 | 230 | 21 |
2019 | 242 | 10 |
2020 | 228 | 25 |
2021 | 239 | 13 |
2022 | 244 | 7 |
2023 | 248 | 2 |
2024 | 244 | 8 |
2025 | 50 | 3 |
In [28]:
# Plotting
plt.figure(figsize=(12, 6), facecolor="#F5F5F5")
# Bar positions
x = np.arange(len(spike_count_SMA[True].index))
width = 0.35
# Plot SMA bars
plt.bar(x - width / 2, spike_count_SMA[True].values, width, color="steelblue", label="Spike Counts Using SMA")
# Plot EMA bars
plt.bar(x + width / 2, spike_count_EMA[True].values, width, color="forestgreen", label="Spike Counts Using EMA")
# Set X axis
# x_tick_spacing = 5 # Specify the interval for y-axis ticks
# plt.gca().xaxis.set_major_locator(MultipleLocator(x_tick_spacing))
plt.xlabel("Year", fontsize=10)
plt.xticks(x, spike_count_SMA[True].index, rotation=45, fontsize=8)
plt.xlim(x[0] - 2 * width, x[-1] + 2 * width)
# # Set Y axis
y_tick_spacing = 2 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.ylabel("Count", fontsize=10)
plt.yticks(fontsize=8)
# Set title, layout, grid, and legend
plt.title("Yearly Totals Of Spike Counts", fontsize=12)
plt.tight_layout()
plt.grid(True, linestyle='--', alpha=0.7)
plt.legend(fontsize=9)
# Save figure and display plot
plt.savefig("08_Spike_Counts.png", dpi=300, bbox_inches="tight")
plt.show()
In [29]:
def vix_plot(start_year, end_year):
# Start and end dates
start_date = start_year + '-01-01'
end_date = end_year + '-12-31'
# Create temporary dataframe for the specified date range
vix_temp = vix[(vix.index >= start_date) & (vix.index <= end_date)]
# Plotting
plt.figure(figsize=(12, 6), facecolor="#F5F5F5")
# Plot data
plt.plot(vix_temp.index, vix_temp['High'], label='High', linestyle='-', color='steelblue', linewidth=1)
plt.plot(vix_temp.index, vix_temp['Low'], label='Low', linestyle='-', color='brown', linewidth=1)
plt.plot(vix_temp.index, vix_temp['High_SMA_10'], label='10 Day High SMA', linestyle='-', color='red', linewidth=1)
plt.plot(vix_temp.index, vix_temp['High_SMA_20'], label='20 Day High SMA', linestyle='-', color='orange', linewidth=1)
plt.plot(vix_temp.index, vix_temp['High_SMA_50'], label='50 Day High SMA', linestyle='-', color='green', linewidth=1)
plt.scatter(vix_temp[vix_temp['Spike_SMA'] == True].index, vix_temp[vix_temp['Spike_SMA'] == True]['High'], label='Spike (High > 1.25 * 10 Day High SMA)', linestyle='-', color='black', s=20)
# Set X axis
plt.gca().xaxis.set_major_locator(mdates.MonthLocator())
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%b %Y'))
plt.xlabel("Date", fontsize=10)
plt.xticks(rotation=45, fontsize=8)
# Set Y axis
y_tick_spacing = 5 # Specify the interval for y-axis ticks
plt.gca().yaxis.set_major_locator(MultipleLocator(y_tick_spacing))
plt.ylabel("VIX", fontsize=10)
plt.yticks(fontsize=8)
# Set title, layout, grid, and legend
plt.title(f"CBOE Volatility Index (VIX), {start_year} - {end_year}", fontsize=12)
plt.tight_layout()
plt.grid(True, linestyle='--', alpha=0.7)
plt.legend(fontsize=9)
# Save figure and display plot
plt.savefig(f"09_VIX_SMA_Spike_{start_year}_{end_year}.png", dpi=300, bbox_inches="tight")
plt.show()
1990¶
In [30]:
vix_plot('1990', '1990')
1999¶
In [31]:
vix_plot('1999', '1999')
2011¶
In [32]:
vix_plot('2011', '2011')
2018¶
In [33]:
vix_plot('2018', '2018')
2019¶
In [34]:
vix_plot('2019', '2019')
2020¶
In [35]:
vix_plot('2020', '2020')
2021¶
In [36]:
vix_plot('2021', '2021')
2022¶
In [37]:
vix_plot('2022', '2022')
2023¶
In [38]:
vix_plot('2023', '2023')
2024¶
In [39]:
vix_plot('2024', '2024')
1990 - 1994¶
In [40]:
vix_plot('1990', '1994')
1995 - 1999¶
In [41]:
vix_plot('1995', '1999')
2000 - 2004¶
In [42]:
vix_plot('2000', '2004')
2005 - 2009¶
In [43]:
vix_plot('2005', '2009')
2010 - 2014¶
In [44]:
vix_plot('2010', '2014')
2015 - 2019¶
In [45]:
vix_plot('2015', '2019')
2020 - 2024¶
2025 - 2025¶
In [47]:
vix_plot('2025', '2025')
In [48]:
vix.tail(10)
Out[48]:
Close | High | Low | Open | High_SMA_10 | High_SMA_10_Shift | Spike_Level_SMA | High_SMA_20 | Spike_SMA | High_SMA_50 | High_EMA_10 | High_EMA_10_Shift | Spike_Level_EMA | High_EMA_20 | Spike_EMA | High_EMA_50 | Year | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | |||||||||||||||||
2025-03-07 | 23.37 | 26.56 | 23.09 | 24.85 | 23.36 | 22.61 | 28.26 | 19.99 | False | 18.86 | 23.54 | 22.87 | 28.59 | 21.48 | False | 19.53 | 2025 |
2025-03-10 | 27.86 | 29.56 | 24.68 | 24.70 | 24.29 | 23.36 | 29.20 | 20.64 | True | 19.05 | 24.64 | 23.54 | 29.43 | 22.25 | True | 19.93 | 2025 |
2025-03-11 | 26.92 | 29.57 | 26.18 | 27.94 | 25.10 | 24.29 | 30.37 | 21.29 | False | 19.30 | 25.54 | 24.64 | 30.80 | 22.95 | False | 20.31 | 2025 |
2025-03-12 | 24.23 | 26.91 | 23.89 | 26.88 | 25.79 | 25.10 | 31.38 | 21.81 | False | 19.52 | 25.79 | 25.54 | 31.92 | 23.33 | False | 20.56 | 2025 |
2025-03-13 | 24.66 | 26.13 | 23.46 | 24.92 | 26.25 | 25.79 | 32.24 | 22.26 | False | 19.68 | 25.85 | 25.79 | 32.23 | 23.59 | False | 20.78 | 2025 |
2025-03-14 | 21.77 | 24.36 | 21.48 | 24.35 | 26.45 | 26.25 | 32.82 | 22.66 | False | 19.78 | 25.58 | 25.85 | 32.31 | 23.67 | False | 20.92 | 2025 |
2025-03-17 | 20.51 | 22.95 | 20.32 | 22.89 | 26.31 | 26.45 | 33.06 | 23.04 | False | 19.88 | 25.10 | 25.58 | 31.97 | 23.60 | False | 21.00 | 2025 |
2025-03-18 | 21.70 | 22.57 | 20.41 | 20.83 | 25.94 | 26.31 | 32.89 | 23.36 | False | 19.94 | 24.64 | 25.10 | 31.37 | 23.50 | False | 21.06 | 2025 |
2025-03-19 | 19.90 | 22.10 | 19.42 | 21.84 | 25.66 | 25.94 | 32.42 | 23.67 | False | 20.03 | 24.18 | 24.64 | 30.80 | 23.37 | False | 21.11 | 2025 |
2025-03-20 | 19.80 | 21.17 | 19.30 | 19.52 | 25.19 | 25.66 | 32.08 | 23.90 | False | 20.11 | 23.63 | 24.18 | 30.22 | 23.16 | False | 21.11 | 2025 |
In [ ]: